On a unit group generated by special values of Siegel modular functions

نویسندگان

  • Takashi Fukuda
  • Keiichi Komatsu
چکیده

There has been important progress in constructing units and Sunits associated to curves of genus 2 or 3. These approaches are based mainly on the consideration of properties of Jacobian varieties associated to hyperelliptic curves of genus 2 or 3. In this paper, we construct a unit group of the ray class field k6 of Q(exp(2πi/5)) modulo 6 with full rank by special values of Siegel modular functions and circular units. We note that k6 = Q(exp(2πi/15), 5 √ −24 ). Our construction of units is number theoretic, and closely based on Shimura’s work describing explicitly the Galois actions on the special values of theta functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

Construction of a Normal Basis by Special Values of Siegel Modular Functions

We consider certain abelian extensions K, k1 of Q(e2πi/5) and show by a method of Shimura that a normal basis of K over k1 can be given by special values of Siegel modular functions.

متن کامل

A computation of minimal polynomials of special values of Siegel modular functions

Recently, Fukuda and Komatsu constructed units of a certain abelian extension of Q(exp(2π √ −1/5)) using special values of Siegel modular functions. In this paper, we determine the minimal polynomials of these units.

متن کامل

A pr 2 00 4 CLASS INVARIANTS FOR QUARTIC CM FIELDS EYAL

One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given in [DSG] and [Lau]. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct S-units in certain abelian extensions...

متن کامل

Class Invariants for Quartic Cm Fields

One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given in [DSG] and [Lau]. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct S-units in certain abelian extensions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000